(7^3-5+2)-(5x^2+5)=0

Simple and best practice solution for (7^3-5+2)-(5x^2+5)=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (7^3-5+2)-(5x^2+5)=0 equation:



(7^3-5+2)-(5x^2+5)=0
We add all the numbers together, and all the variables
-(5x^2+5)+340=0
We get rid of parentheses
-5x^2-5+340=0
We add all the numbers together, and all the variables
-5x^2+335=0
a = -5; b = 0; c = +335;
Δ = b2-4ac
Δ = 02-4·(-5)·335
Δ = 6700
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{6700}=\sqrt{100*67}=\sqrt{100}*\sqrt{67}=10\sqrt{67}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{67}}{2*-5}=\frac{0-10\sqrt{67}}{-10} =-\frac{10\sqrt{67}}{-10} =-\frac{\sqrt{67}}{-1} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{67}}{2*-5}=\frac{0+10\sqrt{67}}{-10} =\frac{10\sqrt{67}}{-10} =\frac{\sqrt{67}}{-1} $

See similar equations:

| 20+f=40 | | 2(4+2x)+6=3x | | 18+w=30 | | 3(x+20=15 | | g-12=16 | | x4+6x2+5=0 | | 3(x-)=5(1.5+x) | | x+2+x+4+2x+10=90 | | -4+2x=4x=8 | | 60/1=x/5 | | 42=c-100 | | (2x^2-5-7)-(4^2+9-5)=0 | | 4-+2x=4x=8 | | 10x+1=6x-1 | | 17/32x+320=X | | 2/7+3y/4=1/14+5y/8 | | -5(1+5n)=95 | | 13.5(t/60)=10.5(36-t)/60 | | Y=375+-1x | | 8n+27=2n-3 | | Y+-1y=0 | | |x+6|=-2x+9 | | (7x^2+8-3)-(5x-2)= | | 6x+8=19.76 | | X=315+0.6y | | 5(-3+7a)-3=157 | | F(2)=9x^2-4x | | -7x=12x+8 | | 320-5x^2-60x=0 | | -2(7+x)=34 | | 3p-8p-12=8p-3+4 | | -16x^2+40x+240=0 |

Equations solver categories